Phase transitions in chiral magnets from Monte Carlo simulations

Phase transitions in chiral magnets from Monte Carlo simulations Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Phase transitions in chiral magnets from Monte Carlo simulations

Preview Only

Phase transitions in chiral magnets from Monte Carlo simulations

Abstract

Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction.
Loading next page...
 
/lp/aps_physical/phase-transitions-in-chiral-magnets-from-monte-carlo-simulations-lxFAVXjwHZ
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.224433
Publisher site
See Article on Publisher Site

Abstract

Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial