Phase transitions in chiral magnets from Monte Carlo simulations

Phase transitions in chiral magnets from Monte Carlo simulations Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Phase transitions in chiral magnets from Monte Carlo simulations

Preview Only

Phase transitions in chiral magnets from Monte Carlo simulations

Abstract

Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction.
Loading next page...
 
/lp/aps_physical/phase-transitions-in-chiral-magnets-from-monte-carlo-simulations-lxFAVXjwHZ
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.224433
Publisher site
See Article on Publisher Site

Abstract

Motivated by the unusual temperature dependence of the specific heat in MnSi, comprising a combination of a sharp first-order feature accompanied by a broad hump, we study the extended Heisenberg model with competing exchange J and anisotropic Dzyaloshinskii-Moriya D interactions in a broad range of ratio D/J. Utilizing classical Monte Carlo simulations we find an evolution of the temperature dependence of the specific heat and magnetic susceptibility with variation of D/J. Combined with an analysis of the Bragg intensity patterns, we clearly demonstrate that the observed puzzling hump in the specific heat of MnSi originates from smearing out of the virtual ferromagnetic second-order phase transition by helical fluctuations which manifest themselves in the transient multiple spiral state. These fluctuations finally condense into the helical ordered phase via a first-order phase transition, as is indicated by the specific heat peak. Thus the model demonstrates a crossover from a second-order to a first-order transition with increasing D/J. Upon further increasing D/J another crossover from a first-order to a second-order transition takes place in the system. Moreover, the results of the calculations clearly indicate that these competing interactions are the primary factors responsible for the appearance of first-order phase transitions in helical magnets with the Dzyaloshinskii-Moriya interaction.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off