Phase Locking the Spin Precession in a Storage Ring

Phase Locking the Spin Precession in a Storage Ring This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Phase Locking the Spin Precession in a Storage Ring

Abstract

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.
Loading next page...
 
/lp/aps_physical/phase-locking-the-spin-precession-in-a-storage-ring-00giiDXciR
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.014801
Publisher site
See Article on Publisher Site

Abstract

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off