Phase Locking the Spin Precession in a Storage Ring

Phase Locking the Spin Precession in a Storage Ring This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Phase Locking the Spin Precession in a Storage Ring

Abstract

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.
Loading next page...
 
/lp/aps_physical/phase-locking-the-spin-precession-in-a-storage-ring-00giiDXciR
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.014801
Publisher site
See Article on Publisher Site

Abstract

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off