Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver

Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver The main objective of this paper is to extend an isothermal incompressible two-phase lattice Boltzmann equation method to model liquid-vapor phase change problems using a sharp-interface energy solver. Two discrete particle distribution functions, one for the continuity equation and the other for the pressure evolution and momentum equations, are considered in the current model. The sharp-interface macroscopic internal energy equation is discretized with an isotropic finite difference method to find temperature distribution in the system. The mass flow generated at liquid-vapor phase interface is embedded in the pressure evolution equation. The sharp-interface treatment of internal energy equation helps to find the interfacial mass flow rate accurately where no free parameter is needed in the calculations. The proposed model is verified against available theoretical solutions of the two-phase Stefan problem and the two-phase sucking interface problem, with which our simulation results are in good agreement. The liquid droplet evaporation in a superheated vapor, the vapor bubble growth in a superheated liquid, and the vapor bubble rising in a superheated liquid are analyzed and underlying physical characteristics are discussed in detail. The model is successfully tested for the liquid-vapor phase change with large density ratio up to 1000. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver

Preview Only

Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver

Abstract

The main objective of this paper is to extend an isothermal incompressible two-phase lattice Boltzmann equation method to model liquid-vapor phase change problems using a sharp-interface energy solver. Two discrete particle distribution functions, one for the continuity equation and the other for the pressure evolution and momentum equations, are considered in the current model. The sharp-interface macroscopic internal energy equation is discretized with an isotropic finite difference method to find temperature distribution in the system. The mass flow generated at liquid-vapor phase interface is embedded in the pressure evolution equation. The sharp-interface treatment of internal energy equation helps to find the interfacial mass flow rate accurately where no free parameter is needed in the calculations. The proposed model is verified against available theoretical solutions of the two-phase Stefan problem and the two-phase sucking interface problem, with which our simulation results are in good agreement. The liquid droplet evaporation in a superheated vapor, the vapor bubble growth in a superheated liquid, and the vapor bubble rising in a superheated liquid are analyzed and underlying physical characteristics are discussed in detail. The model is successfully tested for the liquid-vapor phase change with large density ratio up to 1000.
Loading next page...
 
/lp/aps_physical/phase-field-lattice-boltzmann-modeling-of-boiling-using-a-sharp-TPSozq9P7x
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.013306
Publisher site
See Article on Publisher Site

Abstract

The main objective of this paper is to extend an isothermal incompressible two-phase lattice Boltzmann equation method to model liquid-vapor phase change problems using a sharp-interface energy solver. Two discrete particle distribution functions, one for the continuity equation and the other for the pressure evolution and momentum equations, are considered in the current model. The sharp-interface macroscopic internal energy equation is discretized with an isotropic finite difference method to find temperature distribution in the system. The mass flow generated at liquid-vapor phase interface is embedded in the pressure evolution equation. The sharp-interface treatment of internal energy equation helps to find the interfacial mass flow rate accurately where no free parameter is needed in the calculations. The proposed model is verified against available theoretical solutions of the two-phase Stefan problem and the two-phase sucking interface problem, with which our simulation results are in good agreement. The liquid droplet evaporation in a superheated vapor, the vapor bubble growth in a superheated liquid, and the vapor bubble rising in a superheated liquid are analyzed and underlying physical characteristics are discussed in detail. The model is successfully tested for the liquid-vapor phase change with large density ratio up to 1000.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 11, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial