Phantom domain walls

Phantom domain walls We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)
Preview Only

Phantom domain walls

Abstract

We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy.
Loading next page...
 
/lp/aps_physical/phantom-domain-walls-YNcQWeGkQr
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.043506
Publisher site
See Article on Publisher Site

Abstract

We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off