Perturbed dissipative solitons: A variational approach

Perturbed dissipative solitons: A variational approach We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically, the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Perturbed dissipative solitons: A variational approach

Preview Only

Perturbed dissipative solitons: A variational approach

Abstract

We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically, the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution processes.
Loading next page...
 
/lp/aps_physical/perturbed-dissipative-solitons-a-variational-approach-cBHDm3eXJz
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013838
Publisher site
See Article on Publisher Site

Abstract

We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically, the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution processes.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 19, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off