Pendular trapping conditions for ultracold polar molecules enforced by external electric fields

Pendular trapping conditions for ultracold polar molecules enforced by external electric fields We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar Na23K40 polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7∘ between this field and the polarization of the optical laser lead to a trapping design for Na23K40 molecules where decoherence due to electric field strength and laser-intensity fluctuations, as well as fluctuations in the direction of its polarization, are kept to a minimum. One-standard-deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions, pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Pendular trapping conditions for ultracold polar molecules enforced by external electric fields

Preview Only

Pendular trapping conditions for ultracold polar molecules enforced by external electric fields

Abstract

We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar Na23K40 polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7∘ between this field and the polarization of the optical laser lead to a trapping design for Na23K40 molecules where decoherence due to electric field strength and laser-intensity fluctuations, as well as fluctuations in the direction of its polarization, are kept to a minimum. One-standard-deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions, pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.
Loading next page...
 
/lp/aps_physical/pendular-trapping-conditions-for-ultracold-polar-molecules-enforced-by-SUwEoUpT77
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.063422
Publisher site
See Article on Publisher Site

Abstract

We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar Na23K40 polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7∘ between this field and the polarization of the optical laser lead to a trapping design for Na23K40 molecules where decoherence due to electric field strength and laser-intensity fluctuations, as well as fluctuations in the direction of its polarization, are kept to a minimum. One-standard-deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions, pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off