Pendular behavior of public transport networks

Pendular behavior of public transport networks In this paper, we propose a methodology that bears close resemblance to the Fourier analysis of the first harmonic to study networks subjected to pendular behavior. In this context, pendular behavior is characterized by the phenomenon of people's dislocation from their homes to work in the morning and people's dislocation in the opposite direction in the afternoon. Pendular behavior is a relevant phenomenon that takes place in public transport networks because it may reduce the overall efficiency of the system as a result of the asymmetric utilization of the system in different directions. We apply this methodology to the bus transport system of Brasília, which is a city that has commercial and residential activities in distinct boroughs. We show that this methodology can be used to characterize the pendular behavior of this system, identifying the most critical nodes and times of the day when this system is in more severe demanded. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Pendular behavior of public transport networks

Preview Only

Pendular behavior of public transport networks

Abstract

In this paper, we propose a methodology that bears close resemblance to the Fourier analysis of the first harmonic to study networks subjected to pendular behavior. In this context, pendular behavior is characterized by the phenomenon of people's dislocation from their homes to work in the morning and people's dislocation in the opposite direction in the afternoon. Pendular behavior is a relevant phenomenon that takes place in public transport networks because it may reduce the overall efficiency of the system as a result of the asymmetric utilization of the system in different directions. We apply this methodology to the bus transport system of Brasília, which is a city that has commercial and residential activities in distinct boroughs. We show that this methodology can be used to characterize the pendular behavior of this system, identifying the most critical nodes and times of the day when this system is in more severe demanded.
Loading next page...
 
/lp/aps_physical/pendular-behavior-of-public-transport-networks-eaDN3eJZ0T
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012309
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a methodology that bears close resemblance to the Fourier analysis of the first harmonic to study networks subjected to pendular behavior. In this context, pendular behavior is characterized by the phenomenon of people's dislocation from their homes to work in the morning and people's dislocation in the opposite direction in the afternoon. Pendular behavior is a relevant phenomenon that takes place in public transport networks because it may reduce the overall efficiency of the system as a result of the asymmetric utilization of the system in different directions. We apply this methodology to the bus transport system of Brasília, which is a city that has commercial and residential activities in distinct boroughs. We show that this methodology can be used to characterize the pendular behavior of this system, identifying the most critical nodes and times of the day when this system is in more severe demanded.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off