Passive scalar transport by a non-Gaussian turbulent flow in the Batchelor regime

Passive scalar transport by a non-Gaussian turbulent flow in the Batchelor regime We analyze passive scalar advection by a turbulent flow in the Batchelor regime. No restrictions on the velocity statistics of the flow are assumed. The properties of the scalar are derived from the statistical properties of velocity; analytic expressions for the moments of scalar density are obtained. We show that the scalar statistics can differ significantly from that obtained in the frames of the Kraichnan model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Passive scalar transport by a non-Gaussian turbulent flow in the Batchelor regime

Preview Only

Passive scalar transport by a non-Gaussian turbulent flow in the Batchelor regime

Abstract

We analyze passive scalar advection by a turbulent flow in the Batchelor regime. No restrictions on the velocity statistics of the flow are assumed. The properties of the scalar are derived from the statistical properties of velocity; analytic expressions for the moments of scalar density are obtained. We show that the scalar statistics can differ significantly from that obtained in the frames of the Kraichnan model.
Loading next page...
 
/lp/aps_physical/passive-scalar-transport-by-a-non-gaussian-turbulent-flow-in-the-Z0tHmkqsx9
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.013117
Publisher site
See Article on Publisher Site

Abstract

We analyze passive scalar advection by a turbulent flow in the Batchelor regime. No restrictions on the velocity statistics of the flow are assumed. The properties of the scalar are derived from the statistical properties of velocity; analytic expressions for the moments of scalar density are obtained. We show that the scalar statistics can differ significantly from that obtained in the frames of the Kraichnan model.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off