Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation

Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation

Preview Only

Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation

Abstract

We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.
Loading next page...
 
/lp/aps_physical/origins-of-spectral-broadening-of-incoherent-waves-catastrophic-K9RcwXTpYx
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.023817
Publisher site
See Article on Publisher Site

Abstract

We revisit the mechanisms underlying the process of spectral broadening of incoherent optical waves propagating in nonlinear media on the basis of nonequilibrium thermodynamic considerations. A simple analysis reveals that a prerequisite for the existence of a significant spectral broadening of the waves is that the linear part of the energy (Hamiltonian) has different contributions of opposite signs. It turns out that, at variance with the expected soliton turbulence scenario, an increase of the amount of disorder (incoherence) in the system does not require the generation of a coherent soliton structure. We illustrate the idea by considering the propagation of two wave components in an optical fiber with opposite dispersion coefficients. A wave turbulence approach to the problem reveals that the increase of kinetic energy in one component is offset by the negative reduction in the other component, so that the waves exhibit, as a general rule, virtually unlimited spectral broadening. More precisely, a self-similar solution of the kinetic equations reveals that the spectra of the incoherent waves tend to relax toward a homogeneous distribution in the wake of a front that propagates in frequency space with a decelerating velocity. We discuss this catastrophic process of spectral broadening in the light of different important phenomena, in particular supercontinuum generation, soliton turbulence, wave condensation, and the runaway motion of mechanical systems composed of positive and negative masses.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial