Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

Origin of perpendicular magnetic anisotropy in Co/Ni multilayers We studied the variation in perpendicular magnetic anisotropy of (111) textured Au/N×[Co/Ni]/Au films as a function of the number of bilayer repeats N. The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N≤10 and then moderately decreases for N>10. The model we propose reveals that the decrease of the anisotropy for N<10 is predominantly due to the reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N>10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

Preview Only

Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

Abstract

We studied the variation in perpendicular magnetic anisotropy of (111) textured Au/N×[Co/Ni]/Au films as a function of the number of bilayer repeats N. The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N≤10 and then moderately decreases for N>10. The model we propose reveals that the decrease of the anisotropy for N<10 is predominantly due to the reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N>10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N.
Loading next page...
 
/lp/aps_physical/origin-of-perpendicular-magnetic-anisotropy-in-co-ni-multilayers-4ENAdT0MaV
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024401
Publisher site
See Article on Publisher Site

Abstract

We studied the variation in perpendicular magnetic anisotropy of (111) textured Au/N×[Co/Ni]/Au films as a function of the number of bilayer repeats N. The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N≤10 and then moderately decreases for N>10. The model we propose reveals that the decrease of the anisotropy for N<10 is predominantly due to the reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N>10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial