Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with... We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Preview Only

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Abstract

We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.
Loading next page...
 
/lp/aps_physical/optimizing-stability-of-mutual-synchronization-between-a-pair-of-limit-9Yi9sL3qBO
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012223
Publisher site
See Article on Publisher Site

Abstract

We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off