Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with... We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Preview Only

Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling

Abstract

We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.
Loading next page...
 
/lp/aps_physical/optimizing-stability-of-mutual-synchronization-between-a-pair-of-limit-9Yi9sL3qBO
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012223
Publisher site
See Article on Publisher Site

Abstract

We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial