Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Preview Only

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Abstract

Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.
Loading next page...
 
/lp/aps_physical/optimizing-mutual-synchronization-of-rhythmic-spatiotemporal-patterns-mYbczRhZrD
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012224
Publisher site
See Article on Publisher Site

Abstract

Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off