Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Preview Only

Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems

Abstract

Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.
Loading next page...
 
/lp/aps_physical/optimizing-mutual-synchronization-of-rhythmic-spatiotemporal-patterns-mYbczRhZrD
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012224
Publisher site
See Article on Publisher Site

Abstract

Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory. The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off