Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface

Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface Light-induced modulations of the refractive index and pattern formation are desirable to generate complex photonic structures via exposure to light. Here we show that local modulations of the effective refractive index and reconfigurable defects can be locally induced in a hybridized thin birefringent film of a nematic liquid crystal (LC) on a photoresponsive (generating photoinduced electric fields) iron doped lithium niobate surface via exposure to a focused laser beam. Samples were studied with a tailored imaging approach, which provided the ability to investigate these optically excited, field-induced responses on a microscopic level. Upon exposure with a focused laser beam, the fluent LC was expanded on the substrate's surface and localized field-induced defects were optically created. Both umbilic (central) and line defects were observed. The formation of field-induced umbilic defects was modeled in numerical simulations. In addition, line defects were experimentally studied. It was seen that line defects interconnected the centers of two central defects (field-induced defects, which were present at the upper and lower surfaces of the LC layer). In addition, line disclinations separating reverse tilt domains (caused by the inhomogeneous distribution of the photogenerated fields) were seen. These line disclinations were pinned to the central defects. By exposure with two adjacent focused laser beams two umbilic defects were created side by side and interconnected with a line defect (the line defects pinned to each umbilic defect were joined in a single defect line). An alternative technique is presented to field-induce promising photonic motives (microlenses, resonators, line defects) in a liquid crystalline, hybridized birefringent film on a microscopic scale by using a low-power laser (opposed to the high power necessary to induce optical Kerr responses in a neat LC). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface

Preview Only

Optical manipulation and defect creation in a liquid crystal on a photoresponsive surface

Abstract

Light-induced modulations of the refractive index and pattern formation are desirable to generate complex photonic structures via exposure to light. Here we show that local modulations of the effective refractive index and reconfigurable defects can be locally induced in a hybridized thin birefringent film of a nematic liquid crystal (LC) on a photoresponsive (generating photoinduced electric fields) iron doped lithium niobate surface via exposure to a focused laser beam. Samples were studied with a tailored imaging approach, which provided the ability to investigate these optically excited, field-induced responses on a microscopic level. Upon exposure with a focused laser beam, the fluent LC was expanded on the substrate's surface and localized field-induced defects were optically created. Both umbilic (central) and line defects were observed. The formation of field-induced umbilic defects was modeled in numerical simulations. In addition, line defects were experimentally studied. It was seen that line defects interconnected the centers of two central defects (field-induced defects, which were present at the upper and lower surfaces of the LC layer). In addition, line disclinations separating reverse tilt domains (caused by the inhomogeneous distribution of the photogenerated fields) were seen. These line disclinations were pinned to the central defects. By exposure with two adjacent focused laser beams two umbilic defects were created side by side and interconnected with a line defect (the line defects pinned to each umbilic defect were joined in a single defect line). An alternative technique is presented to field-induce promising photonic motives (microlenses, resonators, line defects) in a liquid crystalline, hybridized birefringent film on a microscopic scale by using a low-power laser (opposed to the high power necessary to induce optical Kerr responses in a neat LC).
Loading next page...
 
/lp/aps_physical/optical-manipulation-and-defect-creation-in-a-liquid-crystal-on-a-TSSRsu1IOw
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022701
Publisher site
See Article on Publisher Site

Abstract

Light-induced modulations of the refractive index and pattern formation are desirable to generate complex photonic structures via exposure to light. Here we show that local modulations of the effective refractive index and reconfigurable defects can be locally induced in a hybridized thin birefringent film of a nematic liquid crystal (LC) on a photoresponsive (generating photoinduced electric fields) iron doped lithium niobate surface via exposure to a focused laser beam. Samples were studied with a tailored imaging approach, which provided the ability to investigate these optically excited, field-induced responses on a microscopic level. Upon exposure with a focused laser beam, the fluent LC was expanded on the substrate's surface and localized field-induced defects were optically created. Both umbilic (central) and line defects were observed. The formation of field-induced umbilic defects was modeled in numerical simulations. In addition, line defects were experimentally studied. It was seen that line defects interconnected the centers of two central defects (field-induced defects, which were present at the upper and lower surfaces of the LC layer). In addition, line disclinations separating reverse tilt domains (caused by the inhomogeneous distribution of the photogenerated fields) were seen. These line disclinations were pinned to the central defects. By exposure with two adjacent focused laser beams two umbilic defects were created side by side and interconnected with a line defect (the line defects pinned to each umbilic defect were joined in a single defect line). An alternative technique is presented to field-induce promising photonic motives (microlenses, resonators, line defects) in a liquid crystalline, hybridized birefringent film on a microscopic scale by using a low-power laser (opposed to the high power necessary to induce optical Kerr responses in a neat LC).

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 2, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial