Optical fluxes in coupled PT-symmetric photonic structures

Optical fluxes in coupled PT-symmetric photonic structures In this work we first examine transverse and longitudinal fluxes in a PT-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the PT transition in a dimer can be regarded as a classical effect, despite its analogy to PT-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the PT-symmetric phase is a subexponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the PT-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a PT diamond and a one-dimensional periodic lattice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Optical fluxes in coupled PT-symmetric photonic structures

Preview Only

Optical fluxes in coupled PT-symmetric photonic structures

Abstract

In this work we first examine transverse and longitudinal fluxes in a PT-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the PT transition in a dimer can be regarded as a classical effect, despite its analogy to PT-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the PT-symmetric phase is a subexponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the PT-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a PT diamond and a one-dimensional periodic lattice.
Loading next page...
 
/lp/aps_physical/optical-fluxes-in-coupled-pt-symmetric-photonic-structures-WYSnhPS0Qz
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.023820
Publisher site
See Article on Publisher Site

Abstract

In this work we first examine transverse and longitudinal fluxes in a PT-symmetric photonic dimer using a coupled-mode theory. Several surprising understandings are obtained from this perspective: The longitudinal flux shows that the PT transition in a dimer can be regarded as a classical effect, despite its analogy to PT-symmetric quantum mechanics. The longitudinal flux also indicates that the so-called giant amplification in the PT-symmetric phase is a subexponential behavior and does not outperform a single gain waveguide. The transverse flux, on the other hand, reveals that the apparent power oscillations between the gain and loss waveguides in the PT-symmetric phase can be deceiving in certain cases, where the transverse power transfer is in fact unidirectional. We also show that this power transfer cannot be arbitrarily fast even when the exceptional point is approached. Finally, we go beyond the coupled-mode theory by using the paraxial wave equation and also extend our discussions to a PT diamond and a one-dimensional periodic lattice.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off