Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) “quadrumerization” of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

Preview Only

Observation of magnetoelastic effects in a quasi-one-dimensional spiral magnet

Abstract

We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) “quadrumerization” of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.
Loading next page...
 
/lp/aps_physical/observation-of-magnetoelastic-effects-in-a-quasi-one-dimensional-cydku0TSU0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.085111
Publisher site
See Article on Publisher Site

Abstract

We present a systematic study of spin and lattice dynamics in the quasi-one-dimensional spiral magnet CuBr2, using Raman scattering in conjunction with infrared and neutron spectroscopy. Along with the development of spin correlations upon cooling, we observe a rich set of broad Raman bands at energies that correspond to phonon-dispersion energies near the one-dimensional magnetic wave vector. The low-energy bands further exhibit a distinct intensity maximum at the spiral magnetic ordering temperature. We attribute these unusual observations to two possible underlying mechanisms: (1) formation of hybrid spin-lattice excitations and/or (2) “quadrumerization” of the lattice caused by spin-singlet entanglement in competition with the spiral magnetism.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off