Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe2

Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe2 Two-dimensional (2D) materials are easily fabricated when their bulk form has a layered structure. The monolayer form in layered transition-metal dichalcogenides is typically the same as a single layer of the bulk material. However, PdSe2 presents a puzzle. Its monolayer form has been theoretically shown to be stable, but there have been no reports that monolayer PdSe2 has been fabricated. Here, combining atomic-scale imaging in a scanning transmission electron microscope and density functional theory, we demonstrate that the preferred monolayer form of this material amounts to a melding of two bulk monolayers accompanied by the emission of Se atoms so that the resulting stoichiometry is Pd2Se3. We further verify the interlayer melding mechanism by creating Se vacancies in situ in the layered PdSe2 matrix using electron irradiation. The discovery that strong interlayer interactions can be induced by defects and lead to the formation of new 2D materials opens a new venue for the exploration of defect engineering and novel 2D structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe2

Preview Only

Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe2

Abstract

Two-dimensional (2D) materials are easily fabricated when their bulk form has a layered structure. The monolayer form in layered transition-metal dichalcogenides is typically the same as a single layer of the bulk material. However, PdSe2 presents a puzzle. Its monolayer form has been theoretically shown to be stable, but there have been no reports that monolayer PdSe2 has been fabricated. Here, combining atomic-scale imaging in a scanning transmission electron microscope and density functional theory, we demonstrate that the preferred monolayer form of this material amounts to a melding of two bulk monolayers accompanied by the emission of Se atoms so that the resulting stoichiometry is Pd2Se3. We further verify the interlayer melding mechanism by creating Se vacancies in situ in the layered PdSe2 matrix using electron irradiation. The discovery that strong interlayer interactions can be induced by defects and lead to the formation of new 2D materials opens a new venue for the exploration of defect engineering and novel 2D structures.
Loading next page...
 
/lp/aps_physical/novel-pd2se3-two-dimensional-phase-driven-by-interlayer-fusion-in-jZ8L7aFinp
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.016101
Publisher site
See Article on Publisher Site

Abstract

Two-dimensional (2D) materials are easily fabricated when their bulk form has a layered structure. The monolayer form in layered transition-metal dichalcogenides is typically the same as a single layer of the bulk material. However, PdSe2 presents a puzzle. Its monolayer form has been theoretically shown to be stable, but there have been no reports that monolayer PdSe2 has been fabricated. Here, combining atomic-scale imaging in a scanning transmission electron microscope and density functional theory, we demonstrate that the preferred monolayer form of this material amounts to a melding of two bulk monolayers accompanied by the emission of Se atoms so that the resulting stoichiometry is Pd2Se3. We further verify the interlayer melding mechanism by creating Se vacancies in situ in the layered PdSe2 matrix using electron irradiation. The discovery that strong interlayer interactions can be induced by defects and lead to the formation of new 2D materials opens a new venue for the exploration of defect engineering and novel 2D structures.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial