Nonuniform Currents and Spins of Relativistic Electron Vortices in a Magnetic Field

Nonuniform Currents and Spins of Relativistic Electron Vortices in a Magnetic Field We present a relativistic description of electron vortex beams in a homogeneous magnetic field. Including spin from the beginning reveals that spin-polarized electron vortex beams have a complicated azimuthal current structure, containing small rings of counterrotating current between rings of stronger corotating current. Contrary to many other problems in relativistic quantum mechanics, there exists a set of vortex beams with exactly zero spin-orbit mixing in the highly relativistic and nonparaxial regime. The well-defined phase structure of these beams is analogous to simpler scalar vortex beams, owing to the protection by the Zeeman effect. For states that do show spin-orbit mixing, the spin polarization across the beam is nonuniform rendering the spin and orbital degrees of freedom inherently inseparable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Nonuniform Currents and Spins of Relativistic Electron Vortices in a Magnetic Field

Preview Only

Nonuniform Currents and Spins of Relativistic Electron Vortices in a Magnetic Field

Abstract

We present a relativistic description of electron vortex beams in a homogeneous magnetic field. Including spin from the beginning reveals that spin-polarized electron vortex beams have a complicated azimuthal current structure, containing small rings of counterrotating current between rings of stronger corotating current. Contrary to many other problems in relativistic quantum mechanics, there exists a set of vortex beams with exactly zero spin-orbit mixing in the highly relativistic and nonparaxial regime. The well-defined phase structure of these beams is analogous to simpler scalar vortex beams, owing to the protection by the Zeeman effect. For states that do show spin-orbit mixing, the spin polarization across the beam is nonuniform rendering the spin and orbital degrees of freedom inherently inseparable.
Loading next page...
 
/lp/aps_physical/nonuniform-currents-and-spins-of-relativistic-electron-vortices-in-a-AIOzk10uWX
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.030401
Publisher site
See Article on Publisher Site

Abstract

We present a relativistic description of electron vortex beams in a homogeneous magnetic field. Including spin from the beginning reveals that spin-polarized electron vortex beams have a complicated azimuthal current structure, containing small rings of counterrotating current between rings of stronger corotating current. Contrary to many other problems in relativistic quantum mechanics, there exists a set of vortex beams with exactly zero spin-orbit mixing in the highly relativistic and nonparaxial regime. The well-defined phase structure of these beams is analogous to simpler scalar vortex beams, owing to the protection by the Zeeman effect. For states that do show spin-orbit mixing, the spin polarization across the beam is nonuniform rendering the spin and orbital degrees of freedom inherently inseparable.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial