Nontrilocality: Exploiting nonlocality from three-particle systems

Nontrilocality: Exploiting nonlocality from three-particle systems Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401] first characterized the correlations arising in an entanglement swapping network under the assumption that the sources generating the initially uncorrelated quantum systems are independent. Precisely speaking, Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401 and later in Phys. Rev. A 85, 032119 (2012)PLRAAN1050-294710.1103/PhysRevA.85.032119] analyzed the importance of bilocal (source independence) assumption to lower the restrictions over correlations for revealing quantumness in the network where each of two sources generates a bipartite entangled state. In this context, one may find interest to characterize correlations in a network involving independent sources which can correlate more than two initially uncorrelated multipartite entangled quantum systems. Our present topic of discussion basically analyzes such a network scenario. Specifically, we introduce a trilocal network scenario where each of three sources independently generates a tripartite entangled quantum system, thereby exploring the role of source independence assumption to exploit nonlocality in a network involving multipartite entanglement analogous to bilocal assumption in a network where only bipartite entanglement was considered. Interestingly, genuine entanglement content did not turn out to be an essential requirement for exploiting nonlocality in such a scenario. Moreover, it is interesting to explore whether such a scenario can be generalized so as to characterize correlations arising in a network involving n number of n-partite systems for any finite value of n≥4 under source independence assumption. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Nontrilocality: Exploiting nonlocality from three-particle systems

Preview Only

Nontrilocality: Exploiting nonlocality from three-particle systems

Abstract

Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401] first characterized the correlations arising in an entanglement swapping network under the assumption that the sources generating the initially uncorrelated quantum systems are independent. Precisely speaking, Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401 and later in Phys. Rev. A 85, 032119 (2012)PLRAAN1050-294710.1103/PhysRevA.85.032119] analyzed the importance of bilocal (source independence) assumption to lower the restrictions over correlations for revealing quantumness in the network where each of two sources generates a bipartite entangled state. In this context, one may find interest to characterize correlations in a network involving independent sources which can correlate more than two initially uncorrelated multipartite entangled quantum systems. Our present topic of discussion basically analyzes such a network scenario. Specifically, we introduce a trilocal network scenario where each of three sources independently generates a tripartite entangled quantum system, thereby exploring the role of source independence assumption to exploit nonlocality in a network involving multipartite entanglement analogous to bilocal assumption in a network where only bipartite entanglement was considered. Interestingly, genuine entanglement content did not turn out to be an essential requirement for exploiting nonlocality in such a scenario. Moreover, it is interesting to explore whether such a scenario can be generalized so as to characterize correlations arising in a network involving n number of n-partite systems for any finite value of n≥4 under source independence assumption.
Loading next page...
 
/lp/aps_physical/nontrilocality-exploiting-nonlocality-from-three-particle-systems-bmdEipH02e
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022103
Publisher site
See Article on Publisher Site

Abstract

Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401] first characterized the correlations arising in an entanglement swapping network under the assumption that the sources generating the initially uncorrelated quantum systems are independent. Precisely speaking, Branciard et al. [Phys. Rev. Lett. 104, 170401 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.170401 and later in Phys. Rev. A 85, 032119 (2012)PLRAAN1050-294710.1103/PhysRevA.85.032119] analyzed the importance of bilocal (source independence) assumption to lower the restrictions over correlations for revealing quantumness in the network where each of two sources generates a bipartite entangled state. In this context, one may find interest to characterize correlations in a network involving independent sources which can correlate more than two initially uncorrelated multipartite entangled quantum systems. Our present topic of discussion basically analyzes such a network scenario. Specifically, we introduce a trilocal network scenario where each of three sources independently generates a tripartite entangled quantum system, thereby exploring the role of source independence assumption to exploit nonlocality in a network involving multipartite entanglement analogous to bilocal assumption in a network where only bipartite entanglement was considered. Interestingly, genuine entanglement content did not turn out to be an essential requirement for exploiting nonlocality in such a scenario. Moreover, it is interesting to explore whether such a scenario can be generalized so as to characterize correlations arising in a network involving n number of n-partite systems for any finite value of n≥4 under source independence assumption.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off