Nonlinear stability of a brane wormhole

Nonlinear stability of a brane wormhole We analytically study the nonlinear stability of a spherically symmetric wormhole supported by an infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a situation in which a thin spherical shell composed of dust falls into an initially static wormhole; the dust shell plays the role of the nonlinear disturbance. The self-gravity of the falling dust shell is completely taken into account through Israel’s formalism of the metric junction. When the dust shell goes through the wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction between these shells is only gravity and show the condition under which the wormhole stably persists after the dust shell goes through it. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Nonlinear stability of a brane wormhole

Preview Only

Nonlinear stability of a brane wormhole

Abstract

We analytically study the nonlinear stability of a spherically symmetric wormhole supported by an infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a situation in which a thin spherical shell composed of dust falls into an initially static wormhole; the dust shell plays the role of the nonlinear disturbance. The self-gravity of the falling dust shell is completely taken into account through Israel’s formalism of the metric junction. When the dust shell goes through the wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction between these shells is only gravity and show the condition under which the wormhole stably persists after the dust shell goes through it.
Loading next page...
 
/lp/aps_physical/nonlinear-stability-of-a-brane-wormhole-9mVo00Mr1h
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024033
Publisher site
See Article on Publisher Site

Abstract

We analytically study the nonlinear stability of a spherically symmetric wormhole supported by an infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a situation in which a thin spherical shell composed of dust falls into an initially static wormhole; the dust shell plays the role of the nonlinear disturbance. The self-gravity of the falling dust shell is completely taken into account through Israel’s formalism of the metric junction. When the dust shell goes through the wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction between these shells is only gravity and show the condition under which the wormhole stably persists after the dust shell goes through it.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial