Nonlinear resonant oscillation of gravitational potential induced by ultralight axion in f(R) gravity

Nonlinear resonant oscillation of gravitational potential induced by ultralight axion in f(R)... We study the ultralight axion dark matter with mass around 10-22  eV in f(R) gravity which might resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear resonance between the ultralight axion and the scalaron. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Nonlinear resonant oscillation of gravitational potential induced by ultralight axion in f(R) gravity

Preview Only

Nonlinear resonant oscillation of gravitational potential induced by ultralight axion in f(R) gravity

Abstract

We study the ultralight axion dark matter with mass around 10-22  eV in f(R) gravity which might resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear resonance between the ultralight axion and the scalaron.
Loading next page...
 
/lp/aps_physical/nonlinear-resonant-oscillation-of-gravitational-potential-induced-by-XITD5jCf0a
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023534
Publisher site
See Article on Publisher Site

Abstract

We study the ultralight axion dark matter with mass around 10-22  eV in f(R) gravity which might resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear resonance between the ultralight axion and the scalaron.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off