# Nonlinear mechanics of rigidifying curves

Nonlinear mechanics of rigidifying curves Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric arguments are given to validate and guide our analysis in a coordinate-free way. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

# Nonlinear mechanics of rigidifying curves

, Volume 96 (1) – Jul 10, 2017

## Nonlinear mechanics of rigidifying curves

Abstract

Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric arguments are given to validate and guide our analysis in a coordinate-free way.

/lp/aps_physical/nonlinear-mechanics-of-rigidifying-curves-1nZW02Dj2T
Publisher
American Physical Society (APS)
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.013003
Publisher site
See Article on Publisher Site

### Abstract

Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric arguments are given to validate and guide our analysis in a coordinate-free way.

### Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 10, 2017

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations