Noninvasive control of excitons in two-dimensional materials

Noninvasive control of excitons in two-dimensional materials We investigate how external screening shapes excitons in two-dimensional semiconductors embedded in laterally structured dielectric environments. An atomic scale view of these elementary excitations is developed using models which apply to a variety of materials including transition metal dichalcogenides. We find that structured dielectrics imprint a peculiar potential energy landscape on excitons in these systems: While the ground-state exciton is least influenced, higher excitations are attracted towards regions with high dielectric constant of the environment. This landscape is “inverted” in the sense that low energy excitons are less strongly affected than their higher energy counterparts. Corresponding energy variations emerge on length scales of the order of a few unit cells. This opens the prospect of trapping and guiding of higher excitons by means of tailor-made dielectric substrates on ultimately small spatial scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Noninvasive control of excitons in two-dimensional materials

Preview Only

Noninvasive control of excitons in two-dimensional materials

Abstract

We investigate how external screening shapes excitons in two-dimensional semiconductors embedded in laterally structured dielectric environments. An atomic scale view of these elementary excitations is developed using models which apply to a variety of materials including transition metal dichalcogenides. We find that structured dielectrics imprint a peculiar potential energy landscape on excitons in these systems: While the ground-state exciton is least influenced, higher excitations are attracted towards regions with high dielectric constant of the environment. This landscape is “inverted” in the sense that low energy excitons are less strongly affected than their higher energy counterparts. Corresponding energy variations emerge on length scales of the order of a few unit cells. This opens the prospect of trapping and guiding of higher excitons by means of tailor-made dielectric substrates on ultimately small spatial scales.
Loading next page...
 
/lp/aps_physical/noninvasive-control-of-excitons-in-two-dimensional-materials-5tno0l30FU
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045431
Publisher site
See Article on Publisher Site

Abstract

We investigate how external screening shapes excitons in two-dimensional semiconductors embedded in laterally structured dielectric environments. An atomic scale view of these elementary excitations is developed using models which apply to a variety of materials including transition metal dichalcogenides. We find that structured dielectrics imprint a peculiar potential energy landscape on excitons in these systems: While the ground-state exciton is least influenced, higher excitations are attracted towards regions with high dielectric constant of the environment. This landscape is “inverted” in the sense that low energy excitons are less strongly affected than their higher energy counterparts. Corresponding energy variations emerge on length scales of the order of a few unit cells. This opens the prospect of trapping and guiding of higher excitons by means of tailor-made dielectric substrates on ultimately small spatial scales.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off