Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (βt), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate βt up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

Preview Only

Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

Abstract

Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (βt), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate βt up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.
Loading next page...
 
/lp/aps_physical/noninductively-driven-tokamak-plasmas-at-near-unity-toroidal-beta-uid0S53YfN
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.035001
Publisher site
See Article on Publisher Site

Abstract

Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (βt), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate βt up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial