Non-Hermiticity-induced flat band

Non-Hermiticity-induced flat band We demonstrate the emergence of an entire flat band with no complex component embedded in dispersive bands at the exceptional point of a PT-symmetric photonic lattice. For this to occur, the gain and loss parameter effectively alters the size of the partial flat band windows and band gap of the photonic lattice simultaneously. The mode associated with the entire flat band is robust against changes in the system size and survives even at the edge of the lattice. Our proposal offers a route for controllable localization of light in non-Hermitian systems and a technique for measuring non-Hermiticity via localization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Non-Hermiticity-induced flat band

Preview Only

Non-Hermiticity-induced flat band

Abstract

We demonstrate the emergence of an entire flat band with no complex component embedded in dispersive bands at the exceptional point of a PT-symmetric photonic lattice. For this to occur, the gain and loss parameter effectively alters the size of the partial flat band windows and band gap of the photonic lattice simultaneously. The mode associated with the entire flat band is robust against changes in the system size and survives even at the edge of the lattice. Our proposal offers a route for controllable localization of light in non-Hermitian systems and a technique for measuring non-Hermiticity via localization.
Loading next page...
 
/lp/aps_physical/non-hermiticity-induced-flat-band-4dlH0GhMxn
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.011802
Publisher site
See Article on Publisher Site

Abstract

We demonstrate the emergence of an entire flat band with no complex component embedded in dispersive bands at the exceptional point of a PT-symmetric photonic lattice. For this to occur, the gain and loss parameter effectively alters the size of the partial flat band windows and band gap of the photonic lattice simultaneously. The mode associated with the entire flat band is robust against changes in the system size and survives even at the edge of the lattice. Our proposal offers a route for controllable localization of light in non-Hermitian systems and a technique for measuring non-Hermiticity via localization.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off