New solution for the high accuracy alignment of accelerator components

New solution for the high accuracy alignment of accelerator components Several state-of-the-art metrology measurement methods have been investigated and combined for a fiducialization of accelerator components in the micrometric regime. The PACMAN project at CERN applied stretched-wire measurement methods to Compact Linear Collider quadrupole and cavity beam position monitor prototypes, to locate their magnetic, respectively, electromagnetic, axis using a dedicated test stand and to determine the position of the wire with respect to external alignment targets (fiducials) testing different methods, such as coordinate measuring machine measurements and microtriangulation. Further studies have been performed using a nanopositioning system, verifying the absolute accuracy and repeatability of the fiducialization method within a few micrometers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Accelerators and Beams American Physical Society (APS)

New solution for the high accuracy alignment of accelerator components

Preview Only

New solution for the high accuracy alignment of accelerator components

Abstract

Several state-of-the-art metrology measurement methods have been investigated and combined for a fiducialization of accelerator components in the micrometric regime. The PACMAN project at CERN applied stretched-wire measurement methods to Compact Linear Collider quadrupole and cavity beam position monitor prototypes, to locate their magnetic, respectively, electromagnetic, axis using a dedicated test stand and to determine the position of the wire with respect to external alignment targets (fiducials) testing different methods, such as coordinate measuring machine measurements and microtriangulation. Further studies have been performed using a nanopositioning system, verifying the absolute accuracy and repeatability of the fiducialization method within a few micrometers.
Loading next page...
 
/lp/aps_physical/new-solution-for-the-high-accuracy-alignment-of-accelerator-components-9VzaCbJb1B
Publisher
American Physical Society
Copyright
Copyright © Published by the American Physical Society
eISSN
2469-9888
D.O.I.
10.1103/PhysRevAccelBeams.20.083501
Publisher site
See Article on Publisher Site

Abstract

Several state-of-the-art metrology measurement methods have been investigated and combined for a fiducialization of accelerator components in the micrometric regime. The PACMAN project at CERN applied stretched-wire measurement methods to Compact Linear Collider quadrupole and cavity beam position monitor prototypes, to locate their magnetic, respectively, electromagnetic, axis using a dedicated test stand and to determine the position of the wire with respect to external alignment targets (fiducials) testing different methods, such as coordinate measuring machine measurements and microtriangulation. Further studies have been performed using a nanopositioning system, verifying the absolute accuracy and repeatability of the fiducialization method within a few micrometers.

Journal

Physical Review Accelerators and BeamsAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off