Negative extensibility metamaterials: Occurrence and design-space topology

Negative extensibility metamaterials: Occurrence and design-space topology A negative extensibility material structure pulls back and contracts when the external tensile load reaches a certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless, due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Negative extensibility metamaterials: Occurrence and design-space topology

Preview Only

Negative extensibility metamaterials: Occurrence and design-space topology

Abstract

A negative extensibility material structure pulls back and contracts when the external tensile load reaches a certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless, due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures.
Loading next page...
 
/lp/aps_physical/negative-extensibility-metamaterials-occurrence-and-design-space-8U6xPce9wu
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.023002
Publisher site
See Article on Publisher Site

Abstract

A negative extensibility material structure pulls back and contracts when the external tensile load reaches a certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless, due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial