Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three- and four-ion coincidence spectroscopy

Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with... The negative-ion fragmentation of formic acid (HCOOH) is studied with negative- and positive-ion coincidence spectroscopy. We report four-body ionic fragmentation where up to three positive ions are collected in coincidence with one negative ion. We report yields for 21 three-body channels and five four-body channels. More than 80% of all negative-ion fragmentation involves production of O−, and it is dominated by complete dissociation of all molecular bonds. Negative-ion creation is most abundant at high-Rydberg resonances and just above the molecule's core-ionization potentials. The existence of four-body fragmentation channels evidences a strong charge redistribution in the molecule. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three- and four-ion coincidence spectroscopy

Preview Only

Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three- and four-ion coincidence spectroscopy

Abstract

The negative-ion fragmentation of formic acid (HCOOH) is studied with negative- and positive-ion coincidence spectroscopy. We report four-body ionic fragmentation where up to three positive ions are collected in coincidence with one negative ion. We report yields for 21 three-body channels and five four-body channels. More than 80% of all negative-ion fragmentation involves production of O−, and it is dominated by complete dissociation of all molecular bonds. Negative-ion creation is most abundant at high-Rydberg resonances and just above the molecule's core-ionization potentials. The existence of four-body fragmentation channels evidences a strong charge redistribution in the molecule.
Loading next page...
 
/lp/aps_physical/negative-and-positive-ion-fragmentation-of-core-excited-formic-acid-RvUuytq1AO
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.023409
Publisher site
See Article on Publisher Site

Abstract

The negative-ion fragmentation of formic acid (HCOOH) is studied with negative- and positive-ion coincidence spectroscopy. We report four-body ionic fragmentation where up to three positive ions are collected in coincidence with one negative ion. We report yields for 21 three-body channels and five four-body channels. More than 80% of all negative-ion fragmentation involves production of O−, and it is dominated by complete dissociation of all molecular bonds. Negative-ion creation is most abundant at high-Rydberg resonances and just above the molecule's core-ionization potentials. The existence of four-body fragmentation channels evidences a strong charge redistribution in the molecule.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off