Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum

Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum We calculate the impact of quantum gravity–motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 105; i.e., eventual observability may not be ruled out. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum

Preview Only

Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum

Abstract

We calculate the impact of quantum gravity–motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 105; i.e., eventual observability may not be ruled out.
Loading next page...
 
/lp/aps_physical/natural-covariant-planck-scale-cutoffs-and-the-cosmic-microwave-fry3lBkMXF
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.031301
Publisher site
See Article on Publisher Site

Abstract

We calculate the impact of quantum gravity–motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 105; i.e., eventual observability may not be ruled out.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off