Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3

Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in... In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFeO3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3

Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3

Physical Review B , Volume 96 (2) – Jul 24, 2017

Abstract

In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFeO3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

Loading next page...
 
/lp/aps_physical/nanosize-effect-enhanced-compensation-temperature-and-existence-of-4ZqEdbMRm5

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
DOI
10.1103/PhysRevB.96.024434
Publisher site
See Article on Publisher Site

Abstract

In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFeO3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.