Multipolar phase in frustrated spin-1/2 and spin-1 chains

Multipolar phase in frustrated spin-1/2 and spin-1 chains The J1-J2 spin-chain model with nearest-neighbor J1 and next-nearest-neighbor antiferromagnetic J2 interaction is one of the most popular frustrated magnetic models. This model system has been extensively studied theoretically and applied to explain the magnetic properties of the real low-dimensional materials. However, the existence of different phases for the J1-J2 model in an axial magnetic field h is either not understood or has been controversial. In this paper, we show the existence of higher order p>4 multipolar phase near the critical point (J2/J1)c=−0.25. The criterion to detect the quadrupolar or spin nematic (SN)/spin density wave of type two (SDW2) phase using the inelastic neutron scattering (INS) experiment data is also discussed, and INS data of LiCuVO4 compound is modeled. We discuss the dimerized and degenerate ground state in the quadrupolar phase. The major contribution of binding energy in the spin-1/2 system comes from the longitudinal component of the nearest-neighbor bonds. We also study spin nematic/SDW2 phase in spin-1 system in large J2/J1 limit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Multipolar phase in frustrated spin-1/2 and spin-1 chains

Preview Only

Multipolar phase in frustrated spin-1/2 and spin-1 chains

Abstract

The J1-J2 spin-chain model with nearest-neighbor J1 and next-nearest-neighbor antiferromagnetic J2 interaction is one of the most popular frustrated magnetic models. This model system has been extensively studied theoretically and applied to explain the magnetic properties of the real low-dimensional materials. However, the existence of different phases for the J1-J2 model in an axial magnetic field h is either not understood or has been controversial. In this paper, we show the existence of higher order p>4 multipolar phase near the critical point (J2/J1)c=−0.25. The criterion to detect the quadrupolar or spin nematic (SN)/spin density wave of type two (SDW2) phase using the inelastic neutron scattering (INS) experiment data is also discussed, and INS data of LiCuVO4 compound is modeled. We discuss the dimerized and degenerate ground state in the quadrupolar phase. The major contribution of binding energy in the spin-1/2 system comes from the longitudinal component of the nearest-neighbor bonds. We also study spin nematic/SDW2 phase in spin-1 system in large J2/J1 limit.
Loading next page...
 
/lp/aps_physical/multipolar-phase-in-frustrated-spin-1-2-and-spin-1-chains-dxKsnGSLzP
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.054413
Publisher site
See Article on Publisher Site

Abstract

The J1-J2 spin-chain model with nearest-neighbor J1 and next-nearest-neighbor antiferromagnetic J2 interaction is one of the most popular frustrated magnetic models. This model system has been extensively studied theoretically and applied to explain the magnetic properties of the real low-dimensional materials. However, the existence of different phases for the J1-J2 model in an axial magnetic field h is either not understood or has been controversial. In this paper, we show the existence of higher order p>4 multipolar phase near the critical point (J2/J1)c=−0.25. The criterion to detect the quadrupolar or spin nematic (SN)/spin density wave of type two (SDW2) phase using the inelastic neutron scattering (INS) experiment data is also discussed, and INS data of LiCuVO4 compound is modeled. We discuss the dimerized and degenerate ground state in the quadrupolar phase. The major contribution of binding energy in the spin-1/2 system comes from the longitudinal component of the nearest-neighbor bonds. We also study spin nematic/SDW2 phase in spin-1 system in large J2/J1 limit.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial