Multiply Quantized Vortices in Fermionic Superfluids: Angular Momentum, Unpaired Fermions, and Spectral Asymmetry

Multiply Quantized Vortices in Fermionic Superfluids: Angular Momentum, Unpaired Fermions, and... We compute the orbital angular momentum Lz of an s-wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For vortices with a winding number |k|>1, we find that in the weak-pairing BCS regime, Lz is significantly reduced from its value ℏNk/2 in the Bose-Einstein condensation (BEC) regime, where N is the total number of fermions. This deviation results from the presence of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow along the vortex subgap states. We support our results analytically and numerically by solving the Bogoliubov–de Gennes equations within the weak-pairing BCS regime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Multiply Quantized Vortices in Fermionic Superfluids: Angular Momentum, Unpaired Fermions, and Spectral Asymmetry

Preview Only

Multiply Quantized Vortices in Fermionic Superfluids: Angular Momentum, Unpaired Fermions, and Spectral Asymmetry

Abstract

We compute the orbital angular momentum Lz of an s-wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For vortices with a winding number |k|>1, we find that in the weak-pairing BCS regime, Lz is significantly reduced from its value ℏNk/2 in the Bose-Einstein condensation (BEC) regime, where N is the total number of fermions. This deviation results from the presence of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow along the vortex subgap states. We support our results analytically and numerically by solving the Bogoliubov–de Gennes equations within the weak-pairing BCS regime.
Loading next page...
 
/lp/aps_physical/multiply-quantized-vortices-in-fermionic-superfluids-angular-momentum-EJH95g76j0
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.067003
Publisher site
See Article on Publisher Site

Abstract

We compute the orbital angular momentum Lz of an s-wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For vortices with a winding number |k|>1, we find that in the weak-pairing BCS regime, Lz is significantly reduced from its value ℏNk/2 in the Bose-Einstein condensation (BEC) regime, where N is the total number of fermions. This deviation results from the presence of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow along the vortex subgap states. We support our results analytically and numerically by solving the Bogoliubov–de Gennes equations within the weak-pairing BCS regime.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Aug 11, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off