Multiply quantized and fractional skyrmions in a binary dipolar Bose-Einstein condensate under rotation

Multiply quantized and fractional skyrmions in a binary dipolar Bose-Einstein condensate under... We consider a binary dipolar Bose-Einstein condensate with repulsive contact and dipolar interactions under rotation. Our results show that the interplay among short-range interaction, long-range interaction, and rotation can give rise to a rich variety of topological configurations, including giant skyrmions with multiply topological charges and skyrmion-vortex lattices. In particular, we find that for fixed rotation frequencies, tuning the short- and long-range interactions can derive novel ground-state phases, such as a meron pair composed of two fractional skyrmions and a skyrmion with topological charge Q=2 centered in giant skyrmions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Multiply quantized and fractional skyrmions in a binary dipolar Bose-Einstein condensate under rotation

Preview Only

Multiply quantized and fractional skyrmions in a binary dipolar Bose-Einstein condensate under rotation

Abstract

We consider a binary dipolar Bose-Einstein condensate with repulsive contact and dipolar interactions under rotation. Our results show that the interplay among short-range interaction, long-range interaction, and rotation can give rise to a rich variety of topological configurations, including giant skyrmions with multiply topological charges and skyrmion-vortex lattices. In particular, we find that for fixed rotation frequencies, tuning the short- and long-range interactions can derive novel ground-state phases, such as a meron pair composed of two fractional skyrmions and a skyrmion with topological charge Q=2 centered in giant skyrmions.
Loading next page...
 
/lp/aps_physical/multiply-quantized-and-fractional-skyrmions-in-a-binary-dipolar-bose-qUazNp5KBY
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013619
Publisher site
See Article on Publisher Site

Abstract

We consider a binary dipolar Bose-Einstein condensate with repulsive contact and dipolar interactions under rotation. Our results show that the interplay among short-range interaction, long-range interaction, and rotation can give rise to a rich variety of topological configurations, including giant skyrmions with multiply topological charges and skyrmion-vortex lattices. In particular, we find that for fixed rotation frequencies, tuning the short- and long-range interactions can derive novel ground-state phases, such as a meron pair composed of two fractional skyrmions and a skyrmion with topological charge Q=2 centered in giant skyrmions.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial