Microscopic muon dynamics in the polymer electrolyte poly(ethylene oxide)

Microscopic muon dynamics in the polymer electrolyte poly(ethylene oxide) The microscopic dynamics of protons (H+) in poly(ethylene oxide) (PEO) have been investigated through a study of implanted positive muons (Mu+), which can be considered a light proton analog. The exponential decay of the muon spin polarization in zero magnetic field indicated that Mu+ hopping is in the fast fluctuation limit between 140 and 310 K and the relaxation rate was found to be sensitive to the glass transition. Mu+ dynamics in PEO was monitored via the relaxation of the muon spin polarization in a transverse field of 10 mT. Activated hopping of Mu+ was observed above the glass transition temperature with an activation barrier of 122±1 meV. The temperature dependence of the diamagnetic muon polarization in PEO can be explained by diffusion of radiolytic electrons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Microscopic muon dynamics in the polymer electrolyte poly(ethylene oxide)

Preview Only

Microscopic muon dynamics in the polymer electrolyte poly(ethylene oxide)

Abstract

The microscopic dynamics of protons (H+) in poly(ethylene oxide) (PEO) have been investigated through a study of implanted positive muons (Mu+), which can be considered a light proton analog. The exponential decay of the muon spin polarization in zero magnetic field indicated that Mu+ hopping is in the fast fluctuation limit between 140 and 310 K and the relaxation rate was found to be sensitive to the glass transition. Mu+ dynamics in PEO was monitored via the relaxation of the muon spin polarization in a transverse field of 10 mT. Activated hopping of Mu+ was observed above the glass transition temperature with an activation barrier of 122±1 meV. The temperature dependence of the diamagnetic muon polarization in PEO can be explained by diffusion of radiolytic electrons.
Loading next page...
 
/lp/aps_physical/microscopic-muon-dynamics-in-the-polymer-electrolyte-poly-ethylene-U5wMyn7cAQ
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012502
Publisher site
See Article on Publisher Site

Abstract

The microscopic dynamics of protons (H+) in poly(ethylene oxide) (PEO) have been investigated through a study of implanted positive muons (Mu+), which can be considered a light proton analog. The exponential decay of the muon spin polarization in zero magnetic field indicated that Mu+ hopping is in the fast fluctuation limit between 140 and 310 K and the relaxation rate was found to be sensitive to the glass transition. Mu+ dynamics in PEO was monitored via the relaxation of the muon spin polarization in a transverse field of 10 mT. Activated hopping of Mu+ was observed above the glass transition temperature with an activation barrier of 122±1 meV. The temperature dependence of the diamagnetic muon polarization in PEO can be explained by diffusion of radiolytic electrons.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 18, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off