Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative... We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Preview Only

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Abstract

We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities.
Loading next page...
 
/lp/aps_physical/metal-nanospheres-under-intense-continuous-wave-illumination-a-unique-M7s0pcM8A3
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012212
Publisher site
See Article on Publisher Site

Abstract

We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off