Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative... We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Preview Only

Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics

Abstract

We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities.
Loading next page...
 
/lp/aps_physical/metal-nanospheres-under-intense-continuous-wave-illumination-a-unique-M7s0pcM8A3
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012212
Publisher site
See Article on Publisher Site

Abstract

We show that the standard perturbative (i.e., cubic) description of the thermal nonlinear response of a single metal nanosphere to intense continuous-wave (CW) illumination is sufficient only for a temperature rise of up to 100 degrees above room temperature. Beyond this regime, the slowing down of the temperature rise requires a nonperturbative description of the nonlinear response, even though the permittivity is linearly dependent on the temperature and despite the deep subwavelength effective propagation distances involved. Using experimental data, we show that, generically, the increase of the imaginary part of the metal permittivity dominates the increase of the host permittivity as well as the resonance shift due to the joint changes to the real parts of the metal and host. Thus, the main nonlinear effect is a decrease of the quality factor of the resonance. We further analyze the relative importance of the various contributions to the temperature rise and thermal nonlinearity, compare the nonlinearity of Au and Ag, demonstrate the potential effect of the nanoparticle morphology, and show that although the thermo-optical nonlinearity of the host typically plays a minor role, its thermal conductivity and its temperature dependence is important. Finally, we discuss the differences between CW and ultrafast thermal nonlinearities.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial