Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R=rareearth): Synergistic effects of local structures and 4f electrons

Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO... Among the iron-based superconductors, the 1111-type Fe-As–based superconductors REFeAsO1-xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4f electrons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R=rareearth): Synergistic effects of local structures and 4f electrons

Preview Only

Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R=rareearth): Synergistic effects of local structures and 4f electrons

Abstract

Among the iron-based superconductors, the 1111-type Fe-As–based superconductors REFeAsO1-xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4f electrons.
Loading next page...
 
/lp/aps_physical/mechanism-of-the-high-transition-temperature-for-the-1111-type-iron-s839KMwsG9
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045114
Publisher site
See Article on Publisher Site

Abstract

Among the iron-based superconductors, the 1111-type Fe-As–based superconductors REFeAsO1-xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4f electrons.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial