Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen calibration standard

Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen... We present accurate measurements of carrier-envelope-phase effects on ionization of the noble gases with few-cycle laser pulses. The experimental apparatus is calibrated by using atomic hydrogen data to remove any systematic offsets and thereby obtain accurate CEP data on other generally used noble gases such as Ar, Kr, and Xe. Experimental results for H are well supported by exact time-dependent Schrödinger equation theoretical simulations; however, significant differences are observed in the case of the noble gases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen calibration standard

Preview Only

Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen calibration standard

Abstract

We present accurate measurements of carrier-envelope-phase effects on ionization of the noble gases with few-cycle laser pulses. The experimental apparatus is calibrated by using atomic hydrogen data to remove any systematic offsets and thereby obtain accurate CEP data on other generally used noble gases such as Ar, Kr, and Xe. Experimental results for H are well supported by exact time-dependent Schrödinger equation theoretical simulations; however, significant differences are observed in the case of the noble gases.
Loading next page...
 
/lp/aps_physical/measuring-laser-carrier-envelope-phase-effects-in-the-noble-gases-with-xWFYfE727r
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013404
Publisher site
See Article on Publisher Site

Abstract

We present accurate measurements of carrier-envelope-phase effects on ionization of the noble gases with few-cycle laser pulses. The experimental apparatus is calibrated by using atomic hydrogen data to remove any systematic offsets and thereby obtain accurate CEP data on other generally used noble gases such as Ar, Kr, and Xe. Experimental results for H are well supported by exact time-dependent Schrödinger equation theoretical simulations; however, significant differences are observed in the case of the noble gases.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial