Many-Particle Entanglement Criterion for Superradiantlike States

Many-Particle Entanglement Criterion for Superradiantlike States We derive a many-particle entanglement criterion for mixed states using a relation between single-mode and many-particle nonclassicalities. The criterion relies on the measurement of collective spin observables. It works very well not only in the vicinity of the Dicke states, but also for the superpositions of Dicke states: superradiant ground states of finite or infinite number of particles and time evolution of single-photon superradiance from an extended sample where random phases appear. We also obtain a criterion for ensemble-field entanglement, which is successful for such kinds of states. We also observe an interesting phenomenon: even though the collective excitation of this many-particle system has a sub-Poissonian character, which results in entanglement, the wave function displays bunching. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Many-Particle Entanglement Criterion for Superradiantlike States

Preview Only

Many-Particle Entanglement Criterion for Superradiantlike States

Abstract

We derive a many-particle entanglement criterion for mixed states using a relation between single-mode and many-particle nonclassicalities. The criterion relies on the measurement of collective spin observables. It works very well not only in the vicinity of the Dicke states, but also for the superpositions of Dicke states: superradiant ground states of finite or infinite number of particles and time evolution of single-photon superradiance from an extended sample where random phases appear. We also obtain a criterion for ensemble-field entanglement, which is successful for such kinds of states. We also observe an interesting phenomenon: even though the collective excitation of this many-particle system has a sub-Poissonian character, which results in entanglement, the wave function displays bunching.
Loading next page...
 
/lp/aps_physical/many-particle-entanglement-criterion-for-superradiantlike-states-O7ObyHl4LG
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.033601
Publisher site
See Article on Publisher Site

Abstract

We derive a many-particle entanglement criterion for mixed states using a relation between single-mode and many-particle nonclassicalities. The criterion relies on the measurement of collective spin observables. It works very well not only in the vicinity of the Dicke states, but also for the superpositions of Dicke states: superradiant ground states of finite or infinite number of particles and time evolution of single-photon superradiance from an extended sample where random phases appear. We also obtain a criterion for ensemble-field entanglement, which is successful for such kinds of states. We also observe an interesting phenomenon: even though the collective excitation of this many-particle system has a sub-Poissonian character, which results in entanglement, the wave function displays bunching.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial