Manipulation of type-I and type-II Dirac points in PdTe2 superconductor by external pressure

Manipulation of type-I and type-II Dirac points in PdTe2 superconductor by external pressure A pair of type-II Dirac cones in PdTe2 was recently predicted by theories and confirmed in experiments, making PdTe2 the first material that processes both superconductivity and type-II Dirac fermions. In this paper, we study the evolution of Dirac cones in PdTe2 under hydrostatic pressure by first-principles calculations. Our results show that the pair of type-II Dirac points disappears at 6.1 GPa. Interestingly, a new pair of type-I Dirac points from the same two bands emerges at 4.7 GPa. Due to the distinctive band structures compared with those of PtSe2 and PtTe2, the two types of Dirac points can coexist in PdTe2 under proper pressure (4.7–6.1 GPa). The emergence of type-I Dirac cones and the disappearance of type-II Dirac ones are attributed to an increase/decrease of the energy of the states at the Γ and A points, which have antibonding/bonding characters of the interlayer Te-Te atoms. On the other hand, we find that the superconductivity of PdTe2 slightly decreases with pressure. The pressure-induced types of Dirac cones combined with superconductivity may open a promising way to investigate the complex interactions between Dirac fermions and superconducting quasiparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Manipulation of type-I and type-II Dirac points in PdTe2 superconductor by external pressure

Preview Only

Manipulation of type-I and type-II Dirac points in PdTe2 superconductor by external pressure

Abstract

A pair of type-II Dirac cones in PdTe2 was recently predicted by theories and confirmed in experiments, making PdTe2 the first material that processes both superconductivity and type-II Dirac fermions. In this paper, we study the evolution of Dirac cones in PdTe2 under hydrostatic pressure by first-principles calculations. Our results show that the pair of type-II Dirac points disappears at 6.1 GPa. Interestingly, a new pair of type-I Dirac points from the same two bands emerges at 4.7 GPa. Due to the distinctive band structures compared with those of PtSe2 and PtTe2, the two types of Dirac points can coexist in PdTe2 under proper pressure (4.7–6.1 GPa). The emergence of type-I Dirac cones and the disappearance of type-II Dirac ones are attributed to an increase/decrease of the energy of the states at the Γ and A points, which have antibonding/bonding characters of the interlayer Te-Te atoms. On the other hand, we find that the superconductivity of PdTe2 slightly decreases with pressure. The pressure-induced types of Dirac cones combined with superconductivity may open a promising way to investigate the complex interactions between Dirac fermions and superconducting quasiparticles.
Loading next page...
 
/lp/aps_physical/manipulation-of-type-i-and-type-ii-dirac-points-in-pdte2-Uu8I6dfqZt
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.075101
Publisher site
See Article on Publisher Site

Abstract

A pair of type-II Dirac cones in PdTe2 was recently predicted by theories and confirmed in experiments, making PdTe2 the first material that processes both superconductivity and type-II Dirac fermions. In this paper, we study the evolution of Dirac cones in PdTe2 under hydrostatic pressure by first-principles calculations. Our results show that the pair of type-II Dirac points disappears at 6.1 GPa. Interestingly, a new pair of type-I Dirac points from the same two bands emerges at 4.7 GPa. Due to the distinctive band structures compared with those of PtSe2 and PtTe2, the two types of Dirac points can coexist in PdTe2 under proper pressure (4.7–6.1 GPa). The emergence of type-I Dirac cones and the disappearance of type-II Dirac ones are attributed to an increase/decrease of the energy of the states at the Γ and A points, which have antibonding/bonding characters of the interlayer Te-Te atoms. On the other hand, we find that the superconductivity of PdTe2 slightly decreases with pressure. The pressure-induced types of Dirac cones combined with superconductivity may open a promising way to investigate the complex interactions between Dirac fermions and superconducting quasiparticles.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off