Magnetized black holes in an external gravitational field

Magnetized black holes in an external gravitational field We obtain a family of exact solutions describing magnetized black holes in an external gravitational field. Locally the solutions can be interpreted as representing the near-horizon region of a black hole, which interacts with a surrounding matter distribution producing a strong magnetic field. Thus, the solutions reflect the influence of both a gravitational and an electromagnetic external potential in the strong field regime. The static members in the family are generalizations of the Schwarzschild solution in the described environment, while the rotating ones generalize the magnetized Reissner-Nordström solution when the influence of an external gravitational source is also taken into account. Technically, the solutions are obtained by means of a Harrison transformation, applied on the (electro-)vacuum distorted black holes constructed by Bretón et al. We examine the thermodynamical properties of the solutions, and compare them with the corresponding isolated black holes, and with the particular cases when the interaction with only one of the external potentials is taken into account. For the static black holes the influence of the external gravitational and magnetic fields is factorized in a sense, both affecting different properties, and leaving the rest intact. For the rotating solutions the external gravitational and magnetic fields are coupled through the conditions for avoiding conical singularities. The Meissner effect is observed for extremal rotating solutions only in the zero-charge limit, similar to the magnetized Reissner-Nordström black hole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Magnetized black holes in an external gravitational field

Preview Only

Magnetized black holes in an external gravitational field

Abstract

We obtain a family of exact solutions describing magnetized black holes in an external gravitational field. Locally the solutions can be interpreted as representing the near-horizon region of a black hole, which interacts with a surrounding matter distribution producing a strong magnetic field. Thus, the solutions reflect the influence of both a gravitational and an electromagnetic external potential in the strong field regime. The static members in the family are generalizations of the Schwarzschild solution in the described environment, while the rotating ones generalize the magnetized Reissner-Nordström solution when the influence of an external gravitational source is also taken into account. Technically, the solutions are obtained by means of a Harrison transformation, applied on the (electro-)vacuum distorted black holes constructed by Bretón et al. We examine the thermodynamical properties of the solutions, and compare them with the corresponding isolated black holes, and with the particular cases when the interaction with only one of the external potentials is taken into account. For the static black holes the influence of the external gravitational and magnetic fields is factorized in a sense, both affecting different properties, and leaving the rest intact. For the rotating solutions the external gravitational and magnetic fields are coupled through the conditions for avoiding conical singularities. The Meissner effect is observed for extremal rotating solutions only in the zero-charge limit, similar to the magnetized Reissner-Nordström black hole.
Loading next page...
 
/lp/aps_physical/magnetized-black-holes-in-an-external-gravitational-field-VmcOx0xFQS
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024017
Publisher site
See Article on Publisher Site

Abstract

We obtain a family of exact solutions describing magnetized black holes in an external gravitational field. Locally the solutions can be interpreted as representing the near-horizon region of a black hole, which interacts with a surrounding matter distribution producing a strong magnetic field. Thus, the solutions reflect the influence of both a gravitational and an electromagnetic external potential in the strong field regime. The static members in the family are generalizations of the Schwarzschild solution in the described environment, while the rotating ones generalize the magnetized Reissner-Nordström solution when the influence of an external gravitational source is also taken into account. Technically, the solutions are obtained by means of a Harrison transformation, applied on the (electro-)vacuum distorted black holes constructed by Bretón et al. We examine the thermodynamical properties of the solutions, and compare them with the corresponding isolated black holes, and with the particular cases when the interaction with only one of the external potentials is taken into account. For the static black holes the influence of the external gravitational and magnetic fields is factorized in a sense, both affecting different properties, and leaving the rest intact. For the rotating solutions the external gravitational and magnetic fields are coupled through the conditions for avoiding conical singularities. The Meissner effect is observed for extremal rotating solutions only in the zero-charge limit, similar to the magnetized Reissner-Nordström black hole.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off