Magnetization compensation and spin reorientation transition in ferrimagnetic DyCo5: Multiscale modeling and element-specific measurements

Magnetization compensation and spin reorientation transition in ferrimagnetic DyCo5: Multiscale... We use a multiscale approach linking ab initio calculations for the parametrization of an atomistic spin model with spin dynamics simulations based on the stochastic Landau-Lifshitz-Gilbert equation to investigate the thermal magnetic properties of the ferrimagnetic rare-earth transition-metal intermetallic DyCo5. Our theoretical findings are compared to elemental resolved measurements on DyCo5 thin films using the x-ray magnetic circular dichroism technique. With our model, we are able to accurately compute the complex temperature dependence of the magnetization. The simulations yield a Curie temperature of TC=1030K and a compensation point of Tcomp=164K, which is in a good agreement with our experimental result of Tcomp=120K. The spin reorientation transition is a consequence of competing elemental magnetocrystalline anisotropies in connection with different degrees of thermal demagnetization in the Dy and Co sublattices. Experimentally, we find this spin reorientation in a region from TSR1,2=320 to 360K, whereas in our simulations the Co anisotropy appears to be underestimated, shifting the spin reorientation to higher temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Magnetization compensation and spin reorientation transition in ferrimagnetic DyCo5: Multiscale modeling and element-specific measurements

Preview Only

Magnetization compensation and spin reorientation transition in ferrimagnetic DyCo5: Multiscale modeling and element-specific measurements

Abstract

We use a multiscale approach linking ab initio calculations for the parametrization of an atomistic spin model with spin dynamics simulations based on the stochastic Landau-Lifshitz-Gilbert equation to investigate the thermal magnetic properties of the ferrimagnetic rare-earth transition-metal intermetallic DyCo5. Our theoretical findings are compared to elemental resolved measurements on DyCo5 thin films using the x-ray magnetic circular dichroism technique. With our model, we are able to accurately compute the complex temperature dependence of the magnetization. The simulations yield a Curie temperature of TC=1030K and a compensation point of Tcomp=164K, which is in a good agreement with our experimental result of Tcomp=120K. The spin reorientation transition is a consequence of competing elemental magnetocrystalline anisotropies in connection with different degrees of thermal demagnetization in the Dy and Co sublattices. Experimentally, we find this spin reorientation in a region from TSR1,2=320 to 360K, whereas in our simulations the Co anisotropy appears to be underestimated, shifting the spin reorientation to higher temperatures.
Loading next page...
 
/lp/aps_physical/magnetization-compensation-and-spin-reorientation-transition-in-angxrAjt5p
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024412
Publisher site
See Article on Publisher Site

Abstract

We use a multiscale approach linking ab initio calculations for the parametrization of an atomistic spin model with spin dynamics simulations based on the stochastic Landau-Lifshitz-Gilbert equation to investigate the thermal magnetic properties of the ferrimagnetic rare-earth transition-metal intermetallic DyCo5. Our theoretical findings are compared to elemental resolved measurements on DyCo5 thin films using the x-ray magnetic circular dichroism technique. With our model, we are able to accurately compute the complex temperature dependence of the magnetization. The simulations yield a Curie temperature of TC=1030K and a compensation point of Tcomp=164K, which is in a good agreement with our experimental result of Tcomp=120K. The spin reorientation transition is a consequence of competing elemental magnetocrystalline anisotropies in connection with different degrees of thermal demagnetization in the Dy and Co sublattices. Experimentally, we find this spin reorientation in a region from TSR1,2=320 to 360K, whereas in our simulations the Co anisotropy appears to be underestimated, shifting the spin reorientation to higher temperatures.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 11, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off