Magnetic field influence on the early-time dynamics of heavy-ion collisions

Magnetic field influence on the early-time dynamics of heavy-ion collisions In high-energy heavy-ion collisions, the magnetic field is very strong right after the nuclei penetrate each other and a nonequilibrium system of quarks and gluons builds up. Even though quarks might not be very abundant initially, their dynamics must necessarily be influenced by the Lorentz force. Employing the (3+1)-d partonic cascade Boltzmann approach to multiparton scatterings (BAMPS), we show that the circular Larmor movement of the quarks leads to a strong positive anisotropic flow of quarks at very soft transverse momenta. We explore the regions where the effect is visible and explicitly show how collisions damp the effect. As a possible application, we look at photon production from the flowing nonequilibrium medium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)

Magnetic field influence on the early-time dynamics of heavy-ion collisions

Preview Only

Magnetic field influence on the early-time dynamics of heavy-ion collisions

Abstract

In high-energy heavy-ion collisions, the magnetic field is very strong right after the nuclei penetrate each other and a nonequilibrium system of quarks and gluons builds up. Even though quarks might not be very abundant initially, their dynamics must necessarily be influenced by the Lorentz force. Employing the (3+1)-d partonic cascade Boltzmann approach to multiparton scatterings (BAMPS), we show that the circular Larmor movement of the quarks leads to a strong positive anisotropic flow of quarks at very soft transverse momenta. We explore the regions where the effect is visible and explicitly show how collisions damp the effect. As a possible application, we look at photon production from the flowing nonequilibrium medium.
Loading next page...
 
/lp/aps_physical/magnetic-field-influence-on-the-early-time-dynamics-of-heavy-ion-Svd9Dy5YSN
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.014903
Publisher site
See Article on Publisher Site

Abstract

In high-energy heavy-ion collisions, the magnetic field is very strong right after the nuclei penetrate each other and a nonequilibrium system of quarks and gluons builds up. Even though quarks might not be very abundant initially, their dynamics must necessarily be influenced by the Lorentz force. Employing the (3+1)-d partonic cascade Boltzmann approach to multiparton scatterings (BAMPS), we show that the circular Larmor movement of the quarks leads to a strong positive anisotropic flow of quarks at very soft transverse momenta. We explore the regions where the effect is visible and explicitly show how collisions damp the effect. As a possible application, we look at photon production from the flowing nonequilibrium medium.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Jul 6, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial