Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl

Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl We report a single-crystal neutron diffraction and inelastic neutron scattering study on the spin 1/2 cuprate Cu3Bi(SeO3)2O2Cl, complemented by dielectric and electric polarization measurements. The study clarifies a number of open issues concerning this complex material, whose frustrated interactions on a kagomelike lattice, combined with Dzyaloshinskii-Moriya interactions, are expected to stabilize an exotic canted antiferromagnetic order. In particular, we determine the nature of the structural transition occurring at 115 K, the magnetic structure below 25 K resolved in the updated space group, and the microscopic ingredients at the origin of this magnetic arrangement. This was achieved by an analysis of the measured gapped spin waves, which signifies the need for an unexpected and significant anisotropic exchange beyond the proposed Dzyaloshinskii-Moriya interactions. Finally, we discuss the multiferroic properties of this material with respect to the space group symmetries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl

Preview Only

Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl

Abstract

We report a single-crystal neutron diffraction and inelastic neutron scattering study on the spin 1/2 cuprate Cu3Bi(SeO3)2O2Cl, complemented by dielectric and electric polarization measurements. The study clarifies a number of open issues concerning this complex material, whose frustrated interactions on a kagomelike lattice, combined with Dzyaloshinskii-Moriya interactions, are expected to stabilize an exotic canted antiferromagnetic order. In particular, we determine the nature of the structural transition occurring at 115 K, the magnetic structure below 25 K resolved in the updated space group, and the microscopic ingredients at the origin of this magnetic arrangement. This was achieved by an analysis of the measured gapped spin waves, which signifies the need for an unexpected and significant anisotropic exchange beyond the proposed Dzyaloshinskii-Moriya interactions. Finally, we discuss the multiferroic properties of this material with respect to the space group symmetries.
Loading next page...
 
/lp/aps_physical/magnetic-and-dielectric-order-in-the-kagomelike-francisite-cu3bi-seo3-RxcQll0q52
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014413
Publisher site
See Article on Publisher Site

Abstract

We report a single-crystal neutron diffraction and inelastic neutron scattering study on the spin 1/2 cuprate Cu3Bi(SeO3)2O2Cl, complemented by dielectric and electric polarization measurements. The study clarifies a number of open issues concerning this complex material, whose frustrated interactions on a kagomelike lattice, combined with Dzyaloshinskii-Moriya interactions, are expected to stabilize an exotic canted antiferromagnetic order. In particular, we determine the nature of the structural transition occurring at 115 K, the magnetic structure below 25 K resolved in the updated space group, and the microscopic ingredients at the origin of this magnetic arrangement. This was achieved by an analysis of the measured gapped spin waves, which signifies the need for an unexpected and significant anisotropic exchange beyond the proposed Dzyaloshinskii-Moriya interactions. Finally, we discuss the multiferroic properties of this material with respect to the space group symmetries.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 11, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off