Macroscopic realism of quantum work fluctuations

Macroscopic realism of quantum work fluctuations We study the fluctuations of the work performed on a driven quantum system, defined as the difference between subsequent measurements of energy eigenvalues. These work fluctuations are governed by statistical theorems with similar expressions in classical and quantum physics. We show that we can distinguish quantum and classical work fluctuations, as the latter can be described by a macrorealistic theory and hence obey Leggett-Garg inequalities. We show that these inequalities are violated by quantum processes in a driven two-level system and in a harmonic oscillator subject to a squeezing transformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Macroscopic realism of quantum work fluctuations

Preview Only

Macroscopic realism of quantum work fluctuations

Abstract

We study the fluctuations of the work performed on a driven quantum system, defined as the difference between subsequent measurements of energy eigenvalues. These work fluctuations are governed by statistical theorems with similar expressions in classical and quantum physics. We show that we can distinguish quantum and classical work fluctuations, as the latter can be described by a macrorealistic theory and hence obey Leggett-Garg inequalities. We show that these inequalities are violated by quantum processes in a driven two-level system and in a harmonic oscillator subject to a squeezing transformation.
Loading next page...
 
/lp/aps_physical/macroscopic-realism-of-quantum-work-fluctuations-PvLDILOFZ6
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012115
Publisher site
See Article on Publisher Site

Abstract

We study the fluctuations of the work performed on a driven quantum system, defined as the difference between subsequent measurements of energy eigenvalues. These work fluctuations are governed by statistical theorems with similar expressions in classical and quantum physics. We show that we can distinguish quantum and classical work fluctuations, as the latter can be described by a macrorealistic theory and hence obey Leggett-Garg inequalities. We show that these inequalities are violated by quantum processes in a driven two-level system and in a harmonic oscillator subject to a squeezing transformation.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off