Macroscopic quantum measurements of noncommuting observables

Macroscopic quantum measurements of noncommuting observables Assuming a well-behaving quantum-to-classical transition, measuring large quantum systems should be highly informative with low measurement-induced disturbance, while the coupling between system and measurement apparatus is fairly simple and weak. Here, we show that this is indeed possible within the formalism of quantum mechanics. We discuss an example of estimating the collective magnetization of a spin ensemble by simultaneous measuring three orthogonal spin directions. For the task of estimating the direction of a spin-coherent state, we find that the average guessing fidelity and the system disturbance are nonmonotonic functions of the coupling strength. Strikingly, we discover an intermediate regime for the coupling strength where the guessing fidelity is quasioptimal, while the measured state is almost not disturbed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Macroscopic quantum measurements of noncommuting observables

Preview Only

Macroscopic quantum measurements of noncommuting observables

Abstract

Assuming a well-behaving quantum-to-classical transition, measuring large quantum systems should be highly informative with low measurement-induced disturbance, while the coupling between system and measurement apparatus is fairly simple and weak. Here, we show that this is indeed possible within the formalism of quantum mechanics. We discuss an example of estimating the collective magnetization of a spin ensemble by simultaneous measuring three orthogonal spin directions. For the task of estimating the direction of a spin-coherent state, we find that the average guessing fidelity and the system disturbance are nonmonotonic functions of the coupling strength. Strikingly, we discover an intermediate regime for the coupling strength where the guessing fidelity is quasioptimal, while the measured state is almost not disturbed.
Loading next page...
 
/lp/aps_physical/macroscopic-quantum-measurements-of-noncommuting-observables-ThXeqXQzMN
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012111
Publisher site
See Article on Publisher Site

Abstract

Assuming a well-behaving quantum-to-classical transition, measuring large quantum systems should be highly informative with low measurement-induced disturbance, while the coupling between system and measurement apparatus is fairly simple and weak. Here, we show that this is indeed possible within the formalism of quantum mechanics. We discuss an example of estimating the collective magnetization of a spin ensemble by simultaneous measuring three orthogonal spin directions. For the task of estimating the direction of a spin-coherent state, we find that the average guessing fidelity and the system disturbance are nonmonotonic functions of the coupling strength. Strikingly, we discover an intermediate regime for the coupling strength where the guessing fidelity is quasioptimal, while the measured state is almost not disturbed.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial