Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Preview Only

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Abstract

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions.
Loading next page...
 
/lp/aps_physical/low-and-intermediate-energy-stopping-power-of-protons-and-antiprotons-tBen6F4Jkr
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012707
Publisher site
See Article on Publisher Site

Abstract

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off