Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Preview Only

Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

Abstract

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions.
Loading next page...
 
/lp/aps_physical/low-and-intermediate-energy-stopping-power-of-protons-and-antiprotons-tBen6F4Jkr
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012707
Publisher site
See Article on Publisher Site

Abstract

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off