Long-period helical structures and twist-grain boundary phases induced by chemical substitution in the Mn1−x(Co,Rh)xGe chiral magnet

Long-period helical structures and twist-grain boundary phases induced by chemical substitution... We study the evolution of helical magnetism in MnGe chiral magnet upon partial substitution of Mn for 3d-Co and 4d-Rh ions. At high doping levels, we observe spin helices with very long periods—more than ten times larger than in the pure compound—and sizable ordered moments. This behavior calls for a change in the energy balance of interactions leading to the stabilization of the observed magnetic structures. Strikingly, neutron scattering unambiguously shows a double periodicity in the observed spectra at x=0.5 and >0.2 for Co- and Rh-doping, respectively. In analogy with observations made in smectic liquid crystals, we suggest that it may reveal the presence of magnetic “twist grain boundary” phases, involving a dense short-range correlated network of magnetic screw dislocations. The dislocation cores are here tentatively described as smooth textures, made of nonradial double-core skyrmions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Long-period helical structures and twist-grain boundary phases induced by chemical substitution in the Mn1−x(Co,Rh)xGe chiral magnet

Preview Only

Long-period helical structures and twist-grain boundary phases induced by chemical substitution in the Mn1−x(Co,Rh)xGe chiral magnet

Abstract

We study the evolution of helical magnetism in MnGe chiral magnet upon partial substitution of Mn for 3d-Co and 4d-Rh ions. At high doping levels, we observe spin helices with very long periods—more than ten times larger than in the pure compound—and sizable ordered moments. This behavior calls for a change in the energy balance of interactions leading to the stabilization of the observed magnetic structures. Strikingly, neutron scattering unambiguously shows a double periodicity in the observed spectra at x=0.5 and >0.2 for Co- and Rh-doping, respectively. In analogy with observations made in smectic liquid crystals, we suggest that it may reveal the presence of magnetic “twist grain boundary” phases, involving a dense short-range correlated network of magnetic screw dislocations. The dislocation cores are here tentatively described as smooth textures, made of nonradial double-core skyrmions.
Loading next page...
 
/lp/aps_physical/long-period-helical-structures-and-twist-grain-boundary-phases-induced-V36FlJifjv
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.020413
Publisher site
See Article on Publisher Site

Abstract

We study the evolution of helical magnetism in MnGe chiral magnet upon partial substitution of Mn for 3d-Co and 4d-Rh ions. At high doping levels, we observe spin helices with very long periods—more than ten times larger than in the pure compound—and sizable ordered moments. This behavior calls for a change in the energy balance of interactions leading to the stabilization of the observed magnetic structures. Strikingly, neutron scattering unambiguously shows a double periodicity in the observed spectra at x=0.5 and >0.2 for Co- and Rh-doping, respectively. In analogy with observations made in smectic liquid crystals, we suggest that it may reveal the presence of magnetic “twist grain boundary” phases, involving a dense short-range correlated network of magnetic screw dislocations. The dislocation cores are here tentatively described as smooth textures, made of nonradial double-core skyrmions.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial