Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range

Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in... We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise. Using Feynman path-integral technique, we find the optimal input signal distribution maximizing the channel's per-sample mutual information at large signal-to-noise ratio in the intermediate power range. The optimal input signal distribution allows us to improve previously known estimates for the channel capacity. We calculate the output signal entropy, conditional entropy, and per-sample mutual information for Gaussian, half-Gaussian, and modified Gaussian input signal distributions. We demonstrate that in the intermediate power range the capacity (the per-sample mutual information for the optimal input signal distribution) is greater than the per-sample mutual information for half-Gaussian input signal distribution considered previously as the optimal one. We also show that the capacity grows as loglogP in the intermediate power range, where P is the signal power. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range

Preview Only

Log-log growth of channel capacity for nondispersive nonlinear optical fiber channel in intermediate power range

Abstract

We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise. Using Feynman path-integral technique, we find the optimal input signal distribution maximizing the channel's per-sample mutual information at large signal-to-noise ratio in the intermediate power range. The optimal input signal distribution allows us to improve previously known estimates for the channel capacity. We calculate the output signal entropy, conditional entropy, and per-sample mutual information for Gaussian, half-Gaussian, and modified Gaussian input signal distributions. We demonstrate that in the intermediate power range the capacity (the per-sample mutual information for the optimal input signal distribution) is greater than the per-sample mutual information for half-Gaussian input signal distribution considered previously as the optimal one. We also show that the capacity grows as loglogP in the intermediate power range, where P is the signal power.
Loading next page...
 
/lp/aps_physical/log-log-growth-of-channel-capacity-for-nondispersive-nonlinear-optical-wn3gYCdlhs
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.95.062133
Publisher site
See Article on Publisher Site

Abstract

We consider a model nondispersive nonlinear optical fiber channel with an additive Gaussian noise. Using Feynman path-integral technique, we find the optimal input signal distribution maximizing the channel's per-sample mutual information at large signal-to-noise ratio in the intermediate power range. The optimal input signal distribution allows us to improve previously known estimates for the channel capacity. We calculate the output signal entropy, conditional entropy, and per-sample mutual information for Gaussian, half-Gaussian, and modified Gaussian input signal distributions. We demonstrate that in the intermediate power range the capacity (the per-sample mutual information for the optimal input signal distribution) is greater than the per-sample mutual information for half-Gaussian input signal distribution considered previously as the optimal one. We also show that the capacity grows as loglogP in the intermediate power range, where P is the signal power.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off