Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian

Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian Linear and nonlinear response formulas taking into account all Casimir invariants are derived without use of angle-action variables of a single-particle (mean-field) Hamiltonian. This article deals mainly with the Vlasov system in a spatially inhomogeneous quasistationary state whose associating single-particle Hamiltonian is not integrable and has only one integral of the motion, the Hamiltonian itself. The basic strategy is to restrict the form of perturbation so that it keeps Casimir invariants within a linear order, and the single particle's probabilistic density function is smooth with respect to the single particle's Hamiltonian. The theory is applied for a spatially two-dimensional system and is confirmed by numerical simulations. A nonlinear response formula is also derived in a similar manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian

Preview Only

Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian

Abstract

Linear and nonlinear response formulas taking into account all Casimir invariants are derived without use of angle-action variables of a single-particle (mean-field) Hamiltonian. This article deals mainly with the Vlasov system in a spatially inhomogeneous quasistationary state whose associating single-particle Hamiltonian is not integrable and has only one integral of the motion, the Hamiltonian itself. The basic strategy is to restrict the form of perturbation so that it keeps Casimir invariants within a linear order, and the single particle's probabilistic density function is smooth with respect to the single particle's Hamiltonian. The theory is applied for a spatially two-dimensional system and is confirmed by numerical simulations. A nonlinear response formula is also derived in a similar manner.
Loading next page...
 
/lp/aps_physical/linear-and-nonlinear-response-of-the-vlasov-system-with-nonintegrable-HYsak1ad46
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012112
Publisher site
See Article on Publisher Site

Abstract

Linear and nonlinear response formulas taking into account all Casimir invariants are derived without use of angle-action variables of a single-particle (mean-field) Hamiltonian. This article deals mainly with the Vlasov system in a spatially inhomogeneous quasistationary state whose associating single-particle Hamiltonian is not integrable and has only one integral of the motion, the Hamiltonian itself. The basic strategy is to restrict the form of perturbation so that it keeps Casimir invariants within a linear order, and the single particle's probabilistic density function is smooth with respect to the single particle's Hamiltonian. The theory is applied for a spatially two-dimensional system and is confirmed by numerical simulations. A nonlinear response formula is also derived in a similar manner.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial