Level lifetimes and the structure of Xe134 from inelastic neutron scattering

Level lifetimes and the structure of Xe134 from inelastic neutron scattering The level structure of Xe134 was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of level lifetimes were determined for the first time with the Doppler-shift attenuation method and the low-lying excited states were characterized. From this new spectroscopic information, the third excited state, a 0+ level which had only been observed in a previous inelastic neutron scattering study, was verified. Reduced transition probabilities were calculated; comparisons were drawn with a vibrational description of the nucleus and found lacking. The 3− octupole phonon has been confirmed, and the complete negative-parity multiplet resulting from the ν(1h11/22d3/2) configuration has also been tentatively identified for the first time in the N=80 isotones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)
Preview Only

Level lifetimes and the structure of Xe134 from inelastic neutron scattering

Abstract

The level structure of Xe134 was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of level lifetimes were determined for the first time with the Doppler-shift attenuation method and the low-lying excited states were characterized. From this new spectroscopic information, the third excited state, a 0+ level which had only been observed in a previous inelastic neutron scattering study, was verified. Reduced transition probabilities were calculated; comparisons were drawn with a vibrational description of the nucleus and found lacking. The 3− octupole phonon has been confirmed, and the complete negative-parity multiplet resulting from the ν(1h11/22d3/2) configuration has also been tentatively identified for the first time in the N=80 isotones.
Loading next page...
 
/lp/aps_physical/level-lifetimes-and-the-structure-of-xe134-from-inelastic-neutron-gtFTRM1d3H
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.014313
Publisher site
See Article on Publisher Site

Abstract

The level structure of Xe134 was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of level lifetimes were determined for the first time with the Doppler-shift attenuation method and the low-lying excited states were characterized. From this new spectroscopic information, the third excited state, a 0+ level which had only been observed in a previous inelastic neutron scattering study, was verified. Reduced transition probabilities were calculated; comparisons were drawn with a vibrational description of the nucleus and found lacking. The 3− octupole phonon has been confirmed, and the complete negative-parity multiplet resulting from the ν(1h11/22d3/2) configuration has also been tentatively identified for the first time in the N=80 isotones.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Jul 19, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off