Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering

Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering We present a compact form of the leptonic currents for the computation of the processes involving an initial virtual boson (photon, W±, or Z0). For deeply inelastic scattering, once the azimuthal angle of the plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities (such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse of the symmetry may lead to wrong results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering

Preview Only

Leptonic current structure and azimuthal asymmetry in deeply inelastic scattering

Abstract

We present a compact form of the leptonic currents for the computation of the processes involving an initial virtual boson (photon, W±, or Z0). For deeply inelastic scattering, once the azimuthal angle of the plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities (such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse of the symmetry may lead to wrong results.
Loading next page...
 
/lp/aps_physical/leptonic-current-structure-and-azimuthal-asymmetry-in-deeply-inelastic-3039ru0ias
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.034002
Publisher site
See Article on Publisher Site

Abstract

We present a compact form of the leptonic currents for the computation of the processes involving an initial virtual boson (photon, W±, or Z0). For deeply inelastic scattering, once the azimuthal angle of the plane expanded by the initial- and final-state leptons is integrated over in the boson-proton center-of-mass frame, the azimuthal-asymmetric terms vanish, which, however, is not true when some physical quantities (such as the transverse momentum of the observed particle) are specified in the laboratory frame. The misuse of the symmetry may lead to wrong results.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off